RADIOLOGICKÁ FYZIKA
PŘÍKLADY A OTÁZKY

Doc. Ing. František Podzimek, CSc.
Upozornění pro čtenáře této knihy

Publikace je chráněna podle autorského zákona č. 121/2000 Sb., ve znění pozdějších předpisů a to v plném rozsahu jako zákonem chráněné autorské dílo. Ochrana se vztahuje na informace jak v grafické, tak textové, či jiné podobě.

Tato publikace a ani žádná jiná její část nesmí být šířena nebo reprodukována v papírové, elektronické nebo jiné podobě bez předchozího písemného souhlasu autora.

Neoprávněné užití této publikace bude trestně stíháno.

Online publikaci může používat pouze osoba, která ji legálně nabyla a jen pro osobní a vnitřní potřebu v rozsahu určeném autorským zákonem. Je zakázáno její kopírování, pronajímání, půjčování a obchodní nebo neobchodní šíření. Především je zakázáno umisťování celé online publikace nebo její části, včetně grafiky, na servery, ze kterých je možno tyto soubory dále stahovat. Uživatel není oprávněn jakkoliv do publikace zasahovat s cílem obejít technického zabezpečení této online publikace.

Copyright © František Podzimek
© Všechna práva vyhrazena
Obsah

1. Úvod ...5
2. Základní postupy ..10
3. Fyzikální veličiny a jejich jednotky ...15
4. Stavba hmoty ..32
5. Radioaktivita ...43
6. Radionuklidové zdroje ionizujícího záření ..55
7. Interakce ionizujícího záření ..84
8. Dozimetrie ionizujícího záření ...108
9. Vztahy mezi dozimetrickými veličinami ...146
10. Ochrana před ionizujícím zářením, dávkové limity ..157
11. Ionizující záření v praxi ...178
12. Kontrolní soubor otázek ...197
13. Správné odpovědi ..260
14. Některé důležité konstanty ..264
15. Literatura ..265
16. Seznam tabulek ...269
17. Seznam obrázků ...270
1. Úvod

Vědní obor Radiologická fyzika se zabývá aplikacemi ionizujícího záření a radionuklidů v lékařských oborech, jako radiodiagnostice, radioterapii a nukleární medicíně, a má také důležité místo v ochraně před ionizujícím zářením. Rostoucí potřeba radiologických asistentů, techniků a fyziků ve zdravotnictví si vyžádala vytvoření a akreditaci nových studijních programů na různých vysokých školách.

Cílem studia těchto studijních oborů je připravit absolventy na výkon zdravotnického povolání radiologický asistent, technik nebo fyzik pro zdravotnicko-fyzikálně-technické zajištění oborů radiodiagnostika, nukleární medicína a radioterapie.

Sbírka úloh je především určena vysokoškolským studentům bakalářského studijního oboru „Radiologický asistent“ Fakulty biomedicínského inženýrství ČVUT v Praze (se sídlem na Kladně) k prohloubení učiva v základním kurzu radiologické fyziky.

Využití najde také u studentů ostatních vysokých škol se zaměřením na studijní obor „Radiologický asistent“ uvedených v tabulce 1.1. Text je také určen i studentům se zaměřením na fyziku ionizujícího záření a jeho aplikací. Cílem učebního textu je seznámit studenty se základními matematickými postupy notnými pro řešení konkrétních praktických úloh z oblasti radiologické fyziky. Postupně se proberou úlohy ze stavby hmoty, při určování základních vlastností radioaktivní přeměny – výpočet aktivity, poločasu přeměny, přírodní radioaktivity atd. Při řešení praktických příkladů si čtenář prohloubí znalosti obecných charakteristik interakce ionizujícího záření s látkou (zejména záření alfa, beta, gama a neutronů), průchod svazků záření látkou, výpočet stínění, polotloušťky apod. Student tak zís-
ká praktické znalosti při výpočtech základních dozimetryckých veličin – aktivity, ex-
pozice, kermy, dávky, dávkového ekvivalentu a dalších veličin. Například při výpo-
čtech pochopí praktický význam ekvivalentní a efektivní dávky při určování sto-
chastických účinků včetně jejich aplikací pro kvantifikaci ozáření pro potřeby radi-
ační ochrany. Ověří si tím získané znalosti o principech detekce, měření ionizující-
ho záření, o dozimetryckých měřicích metodách i použití dozimetryckých veličin a
jednotek se zvláštním zřetelem na využití monitorování záření v radiací ochraně.

Po úvodních kapitolách je text rozdělen na osm tematických okruhů, které
postupně procházejí hlavní problematiku radiologické fyziky.

• Stavba hmoty
• Radioaktivita
• Zdroje ionizujícího záření
• Interakce ionizujícího záření s látkou
• Dozimetrie ionizujícího záření
• Vztahy mezi dozimetryckými veličinami
• Ochrana před ionizujícím zářením, dávkové limity
• Ionizující záření v praxi

Zařazení příkladů do těchto kapitol je pouze orientační a umožňuje studen-
tům přibližnou orientaci v dané problematice. V úvodu každé kapitoly jsou uvede-
y základní pojmy, vztahy a vzorce potřebné k řešení daných příkladů. V případě
potřeby, jsou zde uvedeny i tabulky s hodnotami příslušných fyzikálních veličin,
potřebných k řešení. Univerzální fyzikální konstanty pro řešení úloh ve všech kapi-
tolách jsou uvedeny v závěru publikace. Každá kapitola má v úvodu vyřešeno ně-
kolik typických příkladů k lepšímu pochopení dané látky.
Na konci textu je soubor 230 kontrolních otázek s mnohočetným výběrem odpovědí. V případě jednoduchých příkladů se předpokládá schopnost studenta uvedený příklad řešit zpaměti bez použití kalkulaček apod.

Soubor příkladů a otázek představuje základ znalostí potřebných ke zvládnutí předmětu „Radiologická fyzika“.

V minulosti byla vydána celá řada učebnic a vysokoškolských skript, která se touto problematikou zabývala (1), (2), (3), (4). Bohužel tyto učebnice již nejsou v dostatečném počtu dostupné a některé částečně zastaralé, neboť nezohledňují poslední vývoj v této oblasti. V současné době lze nalézt řadu zajímavých internetových odkazů s podrobně řešenými a komentovanými úlohami v internetových publikacích (5), (6). Bohužel problematika radiační fyziky a aplikace ionizujícího záření je zastoupena minimálně (7).

Z dostupné domácí a zahraniční literatury lze k procvičování uvedené problematiky doporučit např. publikace (8 – 27).
Při tvorbě a výběru jednotlivých příkladů v uvedených kapitolách byl kladen důraz na realnost konkrétních numerických hodnot a jejich praktickou aplikovatelnost.

Použité jaderně dozimetrické konstanty pocházejí z dostupných internetových zdrojů, především (18), (19) a (20).
Soubor otázek s mnohočetným výběrem vychází z předpokládaného rozsahu teoretických znalostí požadovaných pro získání zvláštní odborné způsobilosti pro nakládání se zdroji ionizujícího záření a může sloužit i k dílčí přípravě na tu-to zkoušku, která je pro určitý okruh pracovníků požadována Státním úřadem pro jadernou bezpečnost (SÚJB).
2. Základní postupy

V úvodu si připomeňme zásady, jak postupovat při řešení fyzikálních úloh. Tyto zásady popisují obecnou cestu od předčtení textu úlohy až k jejímu vyřešení. Proces řešení úlohy je především závislý na individuálních schopnostech řešitele a jeho subjektivním přístupu. Znalost strategie řešení fyzikálních úloh může pozitivně ovlivnit proces řešení a mnohdy je důležitější než znalost samotných fyzikálních poznatků.

2.1 Analýza textu

V prvním kroku řešení jde především o správné porozumění všem pojmům a pochopení fyzikální situace. Je třeba si uvědomit, které z informací obsažených v zadání jsou skutečně podstatné pro řešení úlohy. Ne vždy jsou všechny údaje v zadání pro řešení potřebné.

2.2 Zápis zadaných a počítaných veličin

Zápisem rozumíme fyzikální zápis nejdříve zadaných veličin a následně veličin hledaných. Pokud některé hodnoty nutné pro výpočet úlohy nejsou uvedeny v zadání (např. číselné hodnoty fyzikálních konstant), je možné je vychédlat v příslušných tabulkách. Dále převedeme všechny jednotky, pokud je to možné, na hlavní jednotky soustavy SI. Je třeba v zápisu uvést všechny veličiny a jejich číselné hodnoty, které budeme při výpočtu používat.

Z formálního hlediska lze zadání úlohy zapsat dvěma způsoby:

a) Zadané veličiny píšeme vedle sebe do řádku a oddělujeme středníkem. Hledané veličiny napíšeme na nový řádek.
b) Zadané veličiny píšeme pod sebou a hledané veličiny oddělujeme od daných veličin vodorovnou čarou:

\[v = 72 \text{ km h}^{-1} = 20 \text{ m s}^{-1}; \quad t = 20 \text{ s}; \]
\[s = ? \]

2.3 Náčrt

Pokud to situace vyžaduje, načrtáme obrázek (schéma), který vystihuje a vhodně ilustruje zadanou situaci. Z náčrtku si lze ujasnit i geometrické souvislosti, které mohou výpočet značně usnadnit.

2.4 Fyzikální analýza

V dalším kroku výpočtu jde o stanovení logického plánu dalšího postupu. Je třeba si uvědomit fyzikální souvislosti a vybavit si příslušné vzorce a vztahy potřebné k řešení. U komplikovanějších úloh tento krok také zahrnuje určení zjednodušujících podmínek, tzn. zanedbání určité podmínky zadané situace tak, abychom byli schopni úlohu vyřešit bez větší chyby výpočtu.

2.5 Obecné řešení

Spočívá v hledání algebraického (matematického) vztahu mezi hledanou veličinou a veličinami uvedenými v zadání. Algebraickými úpravami lze dospět k výslednému vzorci, kde se na jedné straně vyskytuje veličina hledaná a na dru-
hé straně veličiny známé a použité konstanty. Obecné řešení mohou vede ke značnému zjednodušení číselného výpočtu.

2.6 Stanovení jednotky hledané veličiny, rozměrová zkouška

Nebude-li v zadání uvedeno jinak, lze předpokládat, že výsledek bude vyjádřen v hlavní jednotce soustavy SI. Splnění požadavku na vyjádření výsledku v hlavní jednotce soustavy SI nedělá studentům většinou potíže. Výjimkou jsou pouze ty příklady, jejichž výsledkem je velikost nějakého úhlu (např. mezní úhel, fázový posun), protože si téměř nikdo neuvědomí, že hlavní jednotkou rovinného úhlu je radián. Každá fyzikální rovnice musí splňovat pravidlo, že rozměr (jednotka) levé strany se musí rovnat rozměru (jednotce) pravé strany, proto provádíme tzv. rozměrovou zkoušku. Pokud je rozměr shodný, je předpoklad (nikoliv jistota), že obecné řešení je správné.

2.7 Číselný výpočet

Jedná se o dosazení do obecného vztahu a provedení vlastního výpočtu. Vzhledem k masivnímu používání kalkulaček se jedná pouze o správné zapsání číselných hodnot do kalkulačky a správnou interpretaci výsledku.

Nebude-li v zadání uvedeno jinak, potom se vždy bude předpokládat, že výsledek bude zaokrouhlen na tři platné číslice a vyjádřen v hlavní jednotce soustavy SI. Pokud je číslo v zadání uvedeno na menší počet platných číslic, předpokládá se, že je to přesné číslo.

Požadavek zaokrouhlení na tři platné číslice se ukazuje jako velký problém. I když jde o látku ze základní školy, 90 % studentů není schopno se s tímto požadavkem vyrovnat. Většina se domnívá, že výsledek je tím lepší, čím více číslic.
obsahuje a opíše celý displej kalkulačky. Pokud vůbec nějakým způsobem na toto zadání studenti reagují, zaměňují platná místa, s místy desetinnými.

Uveďme si proto alespoň základní pravidla (1):

- U daného čísla jsou platné všechny zapsané číslice od první zleva nenulové číslice, přičemž se nepočítají nuly plynoucí z násobitele 10^n.

- Zaokrouhlením se rozumí vypuštění platných číslic zprava až do požadovaného počtu platných číslic a případná změna číslice na posledním platném místě.

- V případě, že první z vypuštěných číslic je rovna 5, poslední ponechaná číslice se zvětšuje o jednu.

- Při počítání se zaokrouhlenými čísly upravíme výsledek tak, aby
 - při sčítání a odčítání obsahoval číslice toho nejnižšího řádu, který obsahují všechna čísla,
 - při násobení a dělení obsahoval nejvýše tolik platných číslic, kolik jich má číslo s nejmenším počtem platných číslic,
 - mocnina obsahovala tolik platných číslic, kolik jich má základ,
 - odmocnina měla tolik platných číslic, kolik jich má odmocněnec.

- Pokud nelze provést celý výpočet najednou, provádíme zaokrouhlovační tak, že mezinýsledek zaokrouhlimo na počet platných číslic o jednu větší.
2.8 Diskuze řešení

Diskuze je zhodnocením a interpretací výsledků. Získaný výsledek je třeba konfrontovat se skutečností. Je třeba vyhodnotit splnění použitých předpokladů a odhadnout, jak by asi ovlivnily řešení úlohy. Pokud nám vychází více výsledků (např. kořeny kvadratické rovnice), vybereme pouze ty, které odpovídají realitě, a tento výběr zdůvodníme.

2.9 Odpověď

3. Fyzikální veličiny a jejich jednotky

Fyzikální veličiny

Fyzikálními veličinami charakterizujeme a popisujeme vlastnosti fyzikálních objektů parametry stavů, ve kterých se fyzikální objekty nacházejí parametry fyzikálních jevů (dějů a procesů), které je možno měřit nebo stanovit výpočtem či matematickou simulací. Měřením fyzikální veličiny určujeme její hodnotu. Hodnotu (velikost) fyzikální veličiny určujeme kvantitativním porovnáváním s určitou, předem zvolenou hodnotou veličiny téhož druhu, kterou volíme za jednotku.

Hodnotu fyzikální veličiny \(X \) vyjadřujeme její číselnou hodnotou \(\{X\} \) a jednotkou fyzikální veličiny \([X]\).

\[
\text{Hodnota fyzikální veličiny} = \text{číselná hodnota} \cdot \text{měřicí jednotka}
\]

\[
X = \{X\} \cdot [X]
\]

Jednotka fyzikální veličiny (měřicí jednotka) je dohodou stanovená hodnota fyzikální veličiny, která je základem pro měření fyzikálních veličin stejného druhu.

Zákonné jednotky

Zákonné jednotky v ČR jsou dány ČSN. Mezi zákonné jednotky patří:

- základní jednotky Mezinárodní soustavy jednotek SI, přijaté na XI. Generální konferenci pro váhy a míry v Paříži v roce 1960,
- jednotky odvozené od jednotek SI,
- násobky a díly základních a odvozených jednotek,
- jednotky vedlejší.
Základní jednotky

Základní jednotky jsou vhodně zvolené jednotky základních veličin. Každá základní veličina má pouze jedinou jednotku, která slouží současně jako základní jednotka. V mezinárodní soustavě jednotek SI je sedm základních jednotek v dohodnutém pořadí:

Tabulka 3.1 Hlavní jednotky SI soustavy

<table>
<thead>
<tr>
<th>Veličina</th>
<th>Jednotka</th>
<th>Značka</th>
</tr>
</thead>
<tbody>
<tr>
<td>délka</td>
<td>metr</td>
<td>m</td>
</tr>
<tr>
<td>hmotnost</td>
<td>kilogram</td>
<td>kg</td>
</tr>
<tr>
<td>čas</td>
<td>sekunda</td>
<td>s</td>
</tr>
<tr>
<td>elektrický proud</td>
<td>ampér</td>
<td>A</td>
</tr>
<tr>
<td>termodynamická teplota</td>
<td>kelvin</td>
<td>K</td>
</tr>
<tr>
<td>látkové množství</td>
<td>mol</td>
<td>mol</td>
</tr>
<tr>
<td>svítivost</td>
<td>kandela</td>
<td>cd</td>
</tr>
</tbody>
</table>

metr
délka dráhy, kterou proběhne světlo ve vakuu za 1/299 792 458 sekundy,

kilogram
hmotnost mezinárodního prototypu kilogramu uloženého v Mezinárodním úřadě pro váhy a míry v Sévres u Paříže,
sekunda
doba rovnající se 9 192 631 770 periodám záření, které odpovídá přechodu mezi dvěma hladinami velmi jemné struktury základního stavu atomu \(^{133}\text{Cs}\),

ampér
stálý elektrický proud, který při průchodu dvěma přímými rovnoběžnými nekonečně dlouhými vodiči zanedbatelného kruhového průřezu umístěnými ve vakuu ve vzájemné vzdálenosti 1 metr vyvolá mezi nimi stálou sílu \(2 \cdot 10^{-7}\) newtonu na 1 metr délky vodiče,

kelvin
kelvin je \(1/273,16\) díl termodynamické teploty trojného bodu vody,

mol
mol je látkové množství soustavy, která obsahuje právě tolik elementárních jedinců (entit), kolik je atomů v 0,012 kilogramu nuklidu uhličí \(^{12}\text{C}\) (přesně),

kandela
kandela je svítivost zdroje, který v daném směru vysílá monochromatické záření o kmitočtu \(540 \cdot 10^{12}\) hertzů a jehož zářivost v tomto směru je \(1/683\) wattu na steradián.

Odvozené jednotky

Odvozené jednotky jsou jednotky fyzikálních veličin soustavy SI odvozené ze základních jednotek na základě definičních vztahů, v nichž se vyskytuje násobení, příp. dělení. Dělení je v zápise odvozené jednotky obvykle nahrazeno násobením se zápornou mocninou. Odvozené jednotky jsou **koharentní** vzhledem k jednotkám základním, tzn., že číselný součinitel je roven 1. Některé odvozené jednotky mají vlastní názvy, převážně podle jmen významných fyziků.
Do skupiny odvozených jednotek jsou zařazeny i dříve tzv. doplňkové jednotky – radián a steradián:

radián
rovinný úhel sevřený dvěma polopřímkami, které na kružnici opsané z jejich počátečního bodu vytínají oblouk o délce rovné jejímu poloměru,

steradián
prostorový úhel s vrcholem ve středu kulové plochy, který na této ploše vytíná část s obsahem rovným druhé mocnině poloměru této kulové plochy.

Tabulka 3.2 Odvozené jednotky SI soustavy

<table>
<thead>
<tr>
<th>Jednotka</th>
<th>Značka</th>
<th>Veličina</th>
<th>Fyzikální rozměr</th>
</tr>
</thead>
<tbody>
<tr>
<td>radián</td>
<td>rad</td>
<td>rovinný úhel</td>
<td>m/m = 1</td>
</tr>
<tr>
<td>steradián</td>
<td>sr</td>
<td>prostorový úhel</td>
<td>m²/m² = 1</td>
</tr>
<tr>
<td>m²</td>
<td></td>
<td>plošný obsah</td>
<td>m²</td>
</tr>
<tr>
<td>m³</td>
<td></td>
<td>objem</td>
<td>m³</td>
</tr>
<tr>
<td>m⁻¹</td>
<td></td>
<td>vlnočet</td>
<td>m⁻¹</td>
</tr>
<tr>
<td>hertz</td>
<td>Hz</td>
<td>frekvence</td>
<td>s⁻¹</td>
</tr>
<tr>
<td>m/s</td>
<td></td>
<td>rychlost</td>
<td>m s⁻¹</td>
</tr>
<tr>
<td>rad/s</td>
<td></td>
<td>úhlová rychlost</td>
<td>rad s⁻¹</td>
</tr>
<tr>
<td>m/s²</td>
<td></td>
<td>zrychlení</td>
<td>m s⁻²</td>
</tr>
<tr>
<td>rad/s²</td>
<td></td>
<td>úhlové zrychlení</td>
<td>rad s⁻²</td>
</tr>
<tr>
<td>kg/m³</td>
<td></td>
<td>hustota</td>
<td>kg m⁻³</td>
</tr>
<tr>
<td>m³/kg</td>
<td></td>
<td>měrný objem</td>
<td>m³ kg⁻¹</td>
</tr>
<tr>
<td>newton</td>
<td>N</td>
<td>síla</td>
<td>m kg s⁻²</td>
</tr>
<tr>
<td>pascal</td>
<td>Pa</td>
<td>tlak, napětí</td>
<td>m⁻¹ kg s⁻²</td>
</tr>
<tr>
<td>joule</td>
<td>J</td>
<td>energie, práce, teplo</td>
<td>m² kg s⁻²</td>
</tr>
<tr>
<td>watt</td>
<td>W</td>
<td>výkon</td>
<td>m² kg s⁻³</td>
</tr>
<tr>
<td>Nm</td>
<td></td>
<td>moment síly</td>
<td>m² kg s⁻²</td>
</tr>
<tr>
<td>N/m</td>
<td></td>
<td>povrchové napětí</td>
<td>kg s⁻²</td>
</tr>
<tr>
<td>coulomb</td>
<td>C</td>
<td>elektrický náboj</td>
<td>s A</td>
</tr>
<tr>
<td>volt</td>
<td>V</td>
<td>elektrické napětí, potenciál</td>
<td>m² kg s⁻³ A⁻¹</td>
</tr>
<tr>
<td>V/m</td>
<td>Ω</td>
<td>intenzita elektrického pole</td>
<td>m kg s⁻³ A⁻¹</td>
</tr>
<tr>
<td>ohm</td>
<td></td>
<td>elektrický odpor</td>
<td>m² kg s⁻³ A⁻²</td>
</tr>
<tr>
<td>siemens</td>
<td>S</td>
<td>elektrická vodivost</td>
<td>m⁻² kg⁻¹ s³ A²</td>
</tr>
<tr>
<td>farad</td>
<td>F</td>
<td>elektrická kapacita</td>
<td>m⁻² kg⁻¹ s⁴ A²</td>
</tr>
<tr>
<td>henry</td>
<td>H</td>
<td>elektrická indukce</td>
<td>m⁻² s A</td>
</tr>
<tr>
<td>weber</td>
<td>Wb</td>
<td>magnetický indukční tok</td>
<td>m² kg s⁻² A⁻¹</td>
</tr>
<tr>
<td>tesla</td>
<td>T</td>
<td>magnetická indukce</td>
<td>kg s⁻² A⁻¹</td>
</tr>
<tr>
<td>lumen</td>
<td>lm</td>
<td>světelný tok</td>
<td>cd sr</td>
</tr>
<tr>
<td>lux</td>
<td>lx</td>
<td>osvětlení</td>
<td>m⁻² cd sr</td>
</tr>
<tr>
<td>cd/m²</td>
<td></td>
<td>jas</td>
<td>m² cd</td>
</tr>
<tr>
<td>becquerel</td>
<td>Bq</td>
<td>aktivita</td>
<td>s⁻¹</td>
</tr>
<tr>
<td>C/kg</td>
<td></td>
<td>ozáření (expozice)</td>
<td>kg⁻¹ s A</td>
</tr>
<tr>
<td>gray</td>
<td>Gy</td>
<td>absorbovaná dávka</td>
<td>m² s⁻²</td>
</tr>
<tr>
<td>sievert</td>
<td>Sv</td>
<td>dávkový ekvivalent efektivní / ekvivalentní dávka</td>
<td>m² s⁻²</td>
</tr>
</tbody>
</table>
Násobné a dílčí jednotky

Násobné a dílčí jednotky se tvoří pomocí předpon, které také předepisuje norma. U názvu nesmí být použito více než jedné předpony. Předpony pro tvoření násobků a dílů jednotek podle třetí mocniny deseti jsou uvedeny v následující tabulce.

Tabulka 3.3 Násobné a dílčí jednotky podle třetí mocniny deseti

<table>
<thead>
<tr>
<th>10^n</th>
<th>Předpona</th>
<th>Název</th>
<th>Násobek</th>
<th>Původ</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{24}</td>
<td>yotta</td>
<td>kvadrilion</td>
<td>1 000 000 000 000 000 000 000 000 000 000 000 000</td>
<td>řec. ōktō – „osm“</td>
</tr>
<tr>
<td>10^{21}</td>
<td>zetka</td>
<td>triliarda</td>
<td>1 000 000 000 000 000 000 000 000 000 000 000 000</td>
<td>fr. sept – „sedm“</td>
</tr>
<tr>
<td>10^{18}</td>
<td>exa</td>
<td>trilion</td>
<td>1 000 000 000 000 000 000 000 000 000 000 000 000</td>
<td>řec. ėξ – „šest“</td>
</tr>
<tr>
<td>10^{15}</td>
<td>peta</td>
<td>biliarda</td>
<td>1 000 000 000 000 000 000 000 000 000 000 000 000</td>
<td>řec. τέντε – „pět“</td>
</tr>
<tr>
<td>10^{12}</td>
<td>tera</td>
<td>bilion</td>
<td>1 000 000 000 000 000 000 000 000 000 000 000 000</td>
<td>řec. τέρας – „netvor“</td>
</tr>
<tr>
<td>10^9</td>
<td>giga</td>
<td>miliarda</td>
<td>1 000 000 000 000 000 000 000 000 000 000 000 000</td>
<td>řec. γίγας – „obrovský“</td>
</tr>
<tr>
<td>10^6</td>
<td>mega</td>
<td>milion</td>
<td>1 000 000 000 000 000 000 000 000 000 000 000 000</td>
<td>řec. μέγας – „velký“</td>
</tr>
<tr>
<td>10^3</td>
<td>kilo</td>
<td>tisic</td>
<td>1 000 000 000 000 000 000 000 000 000 000 000 000</td>
<td>řec. χίλιοι – „tisíc“</td>
</tr>
<tr>
<td>10^0</td>
<td></td>
<td>jedna</td>
<td>1 000 000 000 000 000 000 000 000 000 000 000 000</td>
<td>řec. χίλιοι – „tisíc“</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>mili</td>
<td>tisicina</td>
<td>0,001 000 000 000 000 000 000 000 000 000 000 000</td>
<td>lat. mille – „tisíc“</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>mikro</td>
<td>miliontina</td>
<td>0,000 000 000 000 000 000 000 000 000 000 000 000</td>
<td>řec. μικρος – „malý“</td>
</tr>
<tr>
<td>10^{-9}</td>
<td>nano</td>
<td>miliardtina</td>
<td>0,000 000 000 000 000 000 000 000 000 000 000 000</td>
<td>řec. νανος – „trplášik“</td>
</tr>
<tr>
<td>10^{-12}</td>
<td>piko</td>
<td>biliontina</td>
<td>0,000 000 000 000 000 000 000 000 000 000 000 000</td>
<td>it. piccolo – „malý“</td>
</tr>
<tr>
<td>10^{-15}</td>
<td>femto</td>
<td>biliardtina</td>
<td>0,000 000 000 000 000 000 000 000 000 000 000 000</td>
<td>dán. femten – „patnáct“</td>
</tr>
<tr>
<td>10^{-18}</td>
<td>atto</td>
<td>triliontina</td>
<td>0,000 000 000 000 000 000 000 000 000 000 000 000</td>
<td>dán. atten – „osmnáct“</td>
</tr>
<tr>
<td>10^{-21}</td>
<td>zetta</td>
<td>triliardtina</td>
<td>0,000 000 000 000 000 000 000 000 000 000 000 000</td>
<td>fr. sept – „sedm“</td>
</tr>
<tr>
<td>10^{-24}</td>
<td>yokto</td>
<td>kvadriliontina</td>
<td>0,000 000 000 000 000 000 000 000 000 000 000 000</td>
<td>řec. ōktō – „osm“</td>
</tr>
</tbody>
</table>
Kromě těchto předpon je možno užívat i předpon odstupňovaných po jednom dekadickém řádu. Užívání těchto předpon je dovoleno jen ve zvláštních případech, tj. např. hektar (ha), hektolitr (hl) nebo centimetr (cm), kterých se běžně užívalo před zavedením nové normy.

Všeobecně se dává přednost užívání předpon odstupňovaných podle třetí mocniny deseti.

Tabulka 3.4 Násobné a dílčí jednotky podle jiné mocniny deseti než tři

<table>
<thead>
<tr>
<th>10^n</th>
<th>Předpona</th>
<th>Znak</th>
<th>Název</th>
<th>Násobek</th>
<th>Původ</th>
<th>Příklad</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^2</td>
<td>hektó</td>
<td>h</td>
<td>sto</td>
<td>100</td>
<td>řc. ěkářov – „sto“</td>
<td>hPa – hektopascal</td>
</tr>
<tr>
<td>10^1</td>
<td>deka</td>
<td>da</td>
<td>deset</td>
<td>10</td>
<td>řc. δěkα – „deset“</td>
<td>dag – dekagram</td>
</tr>
<tr>
<td>10^0</td>
<td>-</td>
<td>-</td>
<td>jedna</td>
<td>1</td>
<td>lat. decimus – „desátý“</td>
<td>- – metr</td>
</tr>
<tr>
<td>10^{-1}</td>
<td>deci</td>
<td>d</td>
<td>desetina</td>
<td>0,1</td>
<td>lat. centum – „sto“</td>
<td>cm – centimetr</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>centi</td>
<td>c</td>
<td>setina</td>
<td>0,01</td>
<td>lat. centum – „sto“</td>
<td>cm – centimetr</td>
</tr>
</tbody>
</table>

Vedlejší jednotky

Obecně, vedlejší jednotky nepatří do soustavy SI, ale norma povoluje používání některých z nich. Tyto jednotky nejsou koherentní vůči základním jednotkám SI. Jejich užívání v běžném praktickém životě je ale tradiční a jejich hodnoty jsou ve srovnání s odpovídajícími jednotkami SI pro praxi vhodnější. Bylo tedy nutné (a vhodné) povolit jejich užívání. Vedlejší jednotky uvádí následující tabulka. K vedlejším jednotkám času a rovinného úhlu se nesmějí přidávat předpony. Předpony nelze také používat u astronomické jednotky, světelného roku, dioptrie a atomové hmotnostní jednotky. Lze používat také jednotek kombinovaných z
jednotek SI a jednotek vedlejších nebo i kombinované z vedlejších jednotek, např. km h⁻¹ nebo l min⁻¹ apod. Bez časového omezení lze používat poměrových a logaritmických jednotek (např. číslo 1, procento, bel, decibel, oktáva) s výjimkou jednotky neper. Z vedlejších jednotek jsou v tomto textu použity vedlejší jednotky času - tropický rok a, den d, hodina h a minuta min.

Tabulka 3.5 Vedlejší jednotky

<table>
<thead>
<tr>
<th>Veličina</th>
<th>Jednotka</th>
<th>Značka</th>
<th>Vztah k jednotkám SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>délka</td>
<td>astronomická jednotka</td>
<td>UA (AU)</td>
<td>1 UA = 1,495 98·10¹¹ m</td>
</tr>
<tr>
<td></td>
<td>parsek</td>
<td>pc</td>
<td>1 pc = 3,085 7·10¹⁶ m</td>
</tr>
<tr>
<td></td>
<td>světelný rok</td>
<td>ly</td>
<td>1 ly = 9,460 5·10¹⁵ m</td>
</tr>
<tr>
<td>hmotnost</td>
<td>atomová hmotnostní jednotka</td>
<td>u</td>
<td>1 u = 1,660 57·10⁻²⁷ kg</td>
</tr>
<tr>
<td></td>
<td>tuna</td>
<td>t</td>
<td>1 t = 1 000 kg</td>
</tr>
<tr>
<td>čas</td>
<td>hodina</td>
<td>h</td>
<td>1 h = 3 600 s</td>
</tr>
<tr>
<td></td>
<td>den</td>
<td>d</td>
<td>1 d = 86 400 s</td>
</tr>
<tr>
<td></td>
<td>minuta</td>
<td>min</td>
<td>1 min = 60 s</td>
</tr>
<tr>
<td></td>
<td>tropický rok</td>
<td>a</td>
<td>1 a = 31 556 926 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 a = 365,242 d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 a = 1,001 obyčejný rok</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 a = 0,998 přestupný rok</td>
</tr>
<tr>
<td>teplota</td>
<td>Celsiův stupeň</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>rovinný úhel</td>
<td>úhlový stupeň</td>
<td>°</td>
<td>$1^\circ = \frac{\pi}{180}$ rad</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>úhlová minuta</td>
<td>′</td>
<td>$1^\prime = \frac{\pi}{10,800}$ rad</td>
<td></td>
</tr>
<tr>
<td>úhlová vteřina</td>
<td>″</td>
<td>$1^\prime = \frac{\pi}{648,000}$ rad</td>
<td></td>
</tr>
<tr>
<td>grad (gon)</td>
<td>g (gon)</td>
<td>$1^g = \frac{\pi}{200}$ rad</td>
<td></td>
</tr>
<tr>
<td>plošný obsah</td>
<td>hektar</td>
<td>ha</td>
<td>1 ha = 10^4 m²</td>
</tr>
<tr>
<td>objem</td>
<td>litr</td>
<td>l, L</td>
<td>1 l = 10^{-3} m³</td>
</tr>
<tr>
<td>tlak</td>
<td>bar</td>
<td>b</td>
<td>1 b = 10^5 Pa</td>
</tr>
<tr>
<td>energie</td>
<td>elektronvolt</td>
<td>eV</td>
<td>1 eV = $1,602 \cdot 10^{-19}$ J</td>
</tr>
<tr>
<td>Optická mohutnost</td>
<td>dioptrie</td>
<td>Dp, D</td>
<td>1 Dp = 1 m⁻¹</td>
</tr>
</tbody>
</table>
Převody fyzikálních jednotek a veličin

3.1 Převeďte na základní jednotku (x,xx \times 10^2 základních jednotek)

a) 35 mm

b) 0,84 km

c) 450 μA

d) 0,0025 GJ

e) 620 km

f) 0,031 mC

h) 850 pA

i) 440 MWh

j) 120 pC

k) 0,38 Gy

l) 350 μSv

m) 0,025 GBq

n) 1350 kJ

o) 0,003 mW

p) 2350 nSv

q) 2200 MWh

r) 120 MBq

s) 0,7 km

i) 250 μGy

u) 0,0125 GBq

3.2 Převeďte ze základní jednotky na jednotku v závorce:

a) 12 500 m = (km)

b) 0,025 A = (μA)

c) 0,23 N = (kN)

d) 0,0000085 Gy = (nGy)

e) 750 000 Bq = (MBq)

f) 0,0028 kg = (g)

g) 0,000145 Gy = (mGy)

h) 45000 Bq = (kBq)

i) 0,00000232 kg = (μg)

j) 0,0024 Sv = (mSv)

k) 6 500 Bq = (kBq)
l) 0,0225 kg = (g)
m) 0,0000345 Sv = (μSv)
n) 1 450 000 Bq = (GBq)
o) 0,000122 kg = (mg)

Převeďte jednotky času:

5 h 25 min = min
14 400 s = h
5 d 11 h = min
288 h = d
360 s = min
192 h = d
1 800 s = h
2,5 d = h
8,5 h = s
0,22 s = ms
V radiologické fyzice, např. při popisu geometrie ozařování, se setkáváme s dvěma typy úhlů:

1. rovinným úhlem;
2. prostorovým úhlem.

Jednotkou rovinného úhlu v obloukové míře je radián (rad). Velikost rovinného úhlu se však běžně vyjadřuje v tzv. stupňové míře, tj. ve stupních, minutách a vteřinách. Radián je rovinný úhel sevřený dvěma radiálními polopaprsky, které vytínají na kružnici oblouk stejné délky, jako má její poloměr.

\[
1° \text{ (úhlový stupeň)} = \frac{\pi}{180} \text{ rad} \\
1' \text{ (úhlová minuta)} = \frac{1}{60°} = \frac{\pi}{10 800} \text{ rad} \\
1'' \text{ (úhlová vteřina)} = \frac{1}{60'} = \frac{\pi}{648 000} \text{ rad}
\]

Plný kruh v šedesátinném dělení = 360°.

Prostorový úhel značíme řeckým písmenem \(\Omega \) s jednotkou jeden steradián (sr). Číselně je tato veličina rovna ploše, kterou vytne kuželosečka na povrchu jednotkové koule (koule o poloměru 1 m), jejíž střed je totožný s vrcholem kuželosečky.
Obrázek 3.1 Definice prostorového úhlu

Jeden steradián odpovídá takovému úhlu u vrcholu kužele, který má s koulí o poloměru 1 m jako průnik plochu o obsah 1 m².

Plný prostorový úhel má velikost 4π sr.
3.3 Převeďte jednotky rovinného úhlu:

\[
\begin{align*}
30° & = \pi \text{ rad} \\
45° & = \pi \text{ rad} \\
60° & = \pi \text{ rad} \\
90° & = \pi \text{ rad} \\
180° & = \pi \text{ rad} \\
270° & = \pi \text{ rad} \\
360° & = \pi \text{ rad} \\
2 \, \pi \text{ rad} & = \circ \\
3/2 \, \pi \text{ rad} & = \circ \\
\pi \text{ rad} & = \circ \\
1/2 \, \pi \text{ rad} & = \circ \\
1/3 \, \pi \text{ rad} & = \circ \\
1/4 \, \pi \text{ rad} & = \circ \\
1/6 \, \pi \text{ rad} & = \circ
\end{align*}
\]
3.4 Jaký prostorový úhel, který zabírá osoba o výšce 180 cm stojící 1 minutu ve vzdálenosti 3 m od bodového zdroje ^{60}Co? Průměrná šíře postavy je přibližně 28 cm. Vypočtěte, kolik nerozptýlených fotonů záření gama dopadne na uvažovanou osobu za uvedený čas, jestliže zdroj má celkovou aktivitu 500 kBq. Určete, kolik je to % celkového počtu uvolněných částic. Rozptýlené částice neuvažujeme.

Řešení

$l = 3 \text{ m}; \nu = 1,8 \text{ m}; s = 28 \text{ cm} = 0,28 \text{ m}; \Omega_0 = 4 \pi \text{ sr}; A = 500 \text{ kBq} = 5 \cdot 10^5 \text{ Bq};

\begin{align*}
\Omega = \ ? \quad n = \ ? \quad p = \ ?
\end{align*}
\[
\theta/2 = \arctan \left(\frac{v}{2 \cdot l} \right)
\]
\[
\phi/2 = \arctan \left(\frac{s}{2 \cdot l} \right)
\]

\[
\theta = 2 \cdot \arctan \left(\frac{0.9}{3} \right) = 33.4^\circ = 0.583 \text{ rad}
\]

\[
\phi = 2 \cdot \arctan \left(\frac{0.14}{3} \right) = 5.34^\circ = 0.093 \text{ rad}
\]

\[
\Omega = \theta \cdot \phi = 0.054 \text{ sr}
\]

\[
p = \frac{\Omega}{\Omega_0} \cdot 100 \%
\]

\[
p = \frac{0.054 \text{ sr}}{4\pi \text{ sr}} \cdot 100\% = 0.42971 \% = 0.430 \%
\]
Celkový počet uvolněných fotonů je roven dvojnásobku rozpadajících se jader ^{60}Co.

$$n_0 = 2 \cdot N = 2 \cdot A \cdot t$$

$$n_0 = 2 \cdot 5 \cdot 10^5 \cdot 60 = 6 \cdot 10^7 \text{částic}$$

$$n = n_0 \cdot p = 6 \cdot 10^7 \cdot \frac{0,43}{100} = 2,58 \cdot 10^5 \text{fotonů}$$

Za dobu 1 minuty obdrží osoba stojící ve vzdálenosti 3 m od bodového zdroje ^{60}Co o aktivitě 500 kBq celkem $2,58 \cdot 10^5$ fotonů, což je 0,430 % z celkového počtu emitovaných částic. Plocha osoby odpovídá prostorovému úhlu 0,054 sr.
4. Stavba hmoty

Základní pojmy

Jádra atomů jsou složena ze dvou druhů elementárních částic, protonů a neutronů. Společně tyto částice nazýváme nukleony. Nejjednodušším atomem je atom vodíku, jehož jádro je tvořeno protonem a kolem jádra obíhá jedený elektron.

Složitější atomy mají v jádře větší počet protonů a neutronů, počet obíhajících elektronů se rovná počtu protonů v jádře. Složení jádra atomu můžeme popsat třemi čísly: protonovým Z, neutronovým N a nukleonovým A.

Rozměry atomu jsou nepatrné, přibližně 10^{-10} m, jádro atomu je však ještě mnohem menší - jeho "průměr" je 10^{-14} - 10^{-15} m.

Označování a klasifikace atomových jader

Jádra označujeme symbolem $^{A}Z_{X}$, kde je

A – nukleonové číslo udávající počet nukleonů jádře, tj. součet protonů a neutronů,
Z – protonové číslo udávající počet protonů v jádře,
N – neutronové číslo udávající počet neutronů v jádře, $N = A - Z$.

Podle Z, A, N rozlišujeme izotopy (stejné Z), izobary (stejné A), izomery (stejné A i Z) a izotony (stejné N).
Vztahy mezi jádry

Izotopy (Z shodné, A různé) \[\frac{1}{1}H \quad \frac{2}{1}H \quad \frac{3}{1}H. \]
Izobary (A shodné, Z různé) \[\frac{131}{53}\text{I} \quad \frac{131}{52}\text{Te}. \]
Izomery (A,Z shodné, E jádra různá) \[\frac{99}{43}\text{Tc} \quad \frac{99}{43}\text{Tc}. \]
Izotony (stejné N) \[\frac{12}{5}\text{B} \quad \frac{13}{6}\text{C}. \]

Zrcadlová jádra mají stejné A a vzájemně prohozené hodnoty N a Z.

Izomery jsou jádra, která mohou existovat ve vzbuzeném (excitovaném) stavu delší dobu (ms a déle).

Hmotnost atomového jádra

Hmotnost jádra se často vyjadřuje pomocí atomové hmotnostní jednotky, pro kterou platí

\[1 \text{ u} = 1,66057 \cdot 10^{-27} \text{ kg}. \]

Hmotnostní číslo vyjadřuje hmotnost daného nuklídů v jednotkách atomové hmotnosti, která je zaokrouhlená na celé číslo a představuje násobek atomové hmotnostní jednotky. Hmotnostní číslo je rovno počtu nukleonů v jádře, tj. nukleonového číslu.

Atomová konstanta \(m_u \)

\[A_u = 1 \]
\[m_u = 1,6605 \cdot 10^{-27} \text{ kg} = 931,5 \text{ MeV} \cdot \text{c}^{-2} \]

Proton \(p \)

\[A_p = 1,0078250 \]
\[m_p = 1,673 \cdot 10^{-27} \text{ kg} = 938,3 \text{ MeV} \cdot \text{c}^{-2} \]
Neutron n \quad A_n = 1,0086649

\quad m_n = 1,675 \cdot 10^{-27} \text{ kg} \quad = 939,6 \text{ MeV c}^{-2}

Hmotnost jádra je vždy menší než součet hmotností protonů a neutronů. Rozdíl hmotností se nazývá **hmotnostní schodek B**. Platí následující vztahy:

\[
m_j < Z \cdot m_p + N \cdot m_n ,
\]

\[
B = (Z \cdot m_p + N \cdot m_n) - m_j .
\]

Vazebná energie jádra \(E_j \) je rovna

\[
E_j = B_j \cdot c^2 .
\]

Hmotnostní schodek tedy odpovídá energii, která se označuje jako vazebná (vazební) energie a představuje energii, která se uvolní při vzniku jádra z volných nukleonů. Je to také energie, kterou je nutno jádru dodat, aby došlo k jeho rozdělení na jednotlivé nukleony. Tato energie tedy určuje velikost vazby nukleonů v jádře.

Vazebná energie na jeden nukleon \(\varepsilon_j \) je rovna

\[
\varepsilon_j = \frac{E_j}{A} .
\]

Vedlejší jednotky energie a hmotnosti

\[
1 \text{ MeV c}^{-2} = 1,7825 \cdot 10^{-30} \text{ kg}
\]

\[
1 \text{ kg} = 0,561 \cdot 10^{30} \text{ MeV c}^{-2}
\]

\[
1 \text{ eV} = 1,602 \cdot 10^{-19} \text{ J}
\]
Pro vzájemný vztah hmotnosti a energie platí vztah

\[E = m \cdot c^2 , \]

kde \(m \) je hmotnost částice a \(c \) rychlost světla ve vakuu.

Kvantová teorie ukazuje, že vlnové vlastnosti vykazují (v určitých situacích) všechny částice.

Tato skutečnost je jedním z důležitých objevů kvantové fyziky. Takovou hypotézu vyslovil poprvé roku 1924 Louis-Victor de Broglie, který přišel s domněnkou, že i částice lze popsat vlnovou délkou o velikosti:

\[\lambda = \frac{h}{p} , \]

kde \(h \) je Planckova konstanta;

\(p \) hybnost částice.

Ve svých důsledcích to znamená, že každému vlnění lze přiřadit určité částicové vlastnosti, a naopak, každá částice se může projevovat jako vlnění. Tuto myšlenku duality částic a vlnění zavedl v roce 1905 Albert Einstein pro objasnění fotoelektrického jevu.
Pro energii fotonů elektromagnetického záření platí

\[E = h \cdot \nu = h \cdot \frac{c}{\lambda} , \]

kde \(h \) je Planckova konstanta;
\(\nu \) kmitočet vlnění;
\(\lambda \) vlnová délka záření.

Z korpuskulárně – vlnového dualismu částic vyplývá, že pohyb každé částice je spjat se šířením de Brogliho vln, jejichž vlnová délka je dána vztahem

\[\lambda = \frac{h}{m \cdot \nu} = \frac{h}{\sqrt{2 \cdot m \cdot E}} , \]

kde \(h \) je Planckova konstanta;
\(\nu \) rychlost částice;
\(m \) hmotnost částice;
\(E \) kinetická energie;

V případě elektronů, které jsou urychlovány v elektrickém poli vytvořeném napětím \(U \), pak platí:

\[\lambda = \frac{h}{\sqrt{(2 \cdot m_e \cdot e \cdot U)}} , \]

kde \(h \) je Planckova konstanta;
\(m_e \) hmotnost elektronu;
\(e \) náboj elektronu;
\(U \) napětí elektrického pole.
4.1 Určete klidovou energii (ve Wh) tělesa o hmotnosti 1 g.

Řešení

\[m_0 = 1 \text{ g} = 1 \cdot 10^{-3} \text{ kg}; \quad c = 2,99792 \cdot 10^8 \text{ m s}^{-1}; \quad 1 \text{kWh} = 3,6 \cdot 10^6 \text{ J} \]

\[E = ? \]

\[E = m_0 \cdot c^2 \]

\[E = 1 \cdot 10^{-3} \cdot 8,988 \cdot 10^{16} \text{ J} = 8,988 \cdot 10^{13} \text{ J} = 8,988 \cdot 10^{13} \text{ Ws} \]

\[= 2,49654 \cdot 10^{10} = 2,50 \cdot 10^{10} \text{ Wh} \]

Klidová energie odpovídající tělesu o hmotnosti 1 g je 25,0 GWh.

4.2 Jádro s nukleovým číslem 100 má vazbovou energii na jeden nukleon \(\varepsilon_{j1} = 7,4 \text{ MeV} \). Samovolně se rozpadá na dvě jádra s vazební energií připadající na jeden nukleon \(\varepsilon_{j2} = 8,2 \text{ MeV} \). Jaká energie v MeV, resp. J, se při reakci uvolňuje?

Řešení

\[A = 100; \quad \varepsilon_{j1} = 7,4 \text{ MeV}; \quad \varepsilon_{j2} = 8,2 \text{ MeV}; \]

\[E_j = ? \]

\[\Delta \varepsilon = \varepsilon_{j2} - \varepsilon_{j1} \]

\[\Delta \varepsilon = (8,2 - 7,4) \text{ MeV} = 0,8 \text{ MeV} \]

\[E_j = \Delta \varepsilon \cdot A \]

\[E_j = 0,8 \cdot 100 \text{ MeV} = 80 \text{ MeV} = 1,28 \cdot 10^{-11} \text{ J} \]

Při rozpadu jádra v nukleovým číslem 100 se uvolňuje energie 80 MeV, resp. 1,28 \(10^{-11} \) J.
4.3 Při rozštěpení jednoho jádra 235U se uvolňuje přibližně 200 MeV. Určete energii, kterou lze získat úplným rozštěpením 1 kg 235U a množství černého uhlí o výhřevnosti 30 MJ/kg, které poskytne stejně velkou energii.

Řešení

\[A = 235; \ m = 1 \ \text{kg}; \ \Delta E = 200 \ \text{MeV} = 3,204 \cdot 10^{-11} \ \text{J}; \ m_u = 1,6605 \cdot 10^{-27} \ \text{kg}; \]
\[c = 30 \ \text{MJ/kg} \]
\[E = ?; \ m = ? \]

\[
E = \frac{m}{A \cdot m_u} \cdot \Delta E
\]

\[
E = \frac{1}{235 \cdot 1,6605 \cdot 10^{-27}} \cdot 3,204 \cdot 10^{-11} = 8,21 \cdot 10^{13} \ \text{J} = 82,1 \ \text{TJ}
\]

\[
m = \frac{E}{c} = 2,74 \cdot 10^6 \ \text{kg} = 2,74 \ \text{Gg}
\]

Při úplném rozštěpení 235U se uvolní energie 8,21 TJ, která odpovídá výhřevnosti černého uhlí o hmotnosti $2,74 \cdot 10^6$ kg.
4.4 Výbušná síla jaderné bomby se obvykle vyjadřuje v kilotunách (kt) nebo megatunách TNT ekvivalentu klasické výbušniny TNT (trinitrotoluen). Kilotuna TNT je ekvivalentní uvolnění energie \(3,8 \cdot 10^{12}\) J. Při rozštěpení jednoho jádra \(^{235}\text{U}\) se uvolní energie asi 200 MeV. Vypočtěte ekvivalentní počet štěpení odpovídající uvolněné energii 1 kt TNT. Vypočtěte, kolik atomů izotopu \(^{137}\text{Cs}\) bylo při výbuchu v Hirošimě uvolněno, jestliže na jedno štěpení je uvolněno 6,2 % \(^{137}\text{Cs}\), který má poločas přeměny 30 let. Jaká byla celková uvolněná aktivita \(^{137}\text{Cs}\). Bomba svržená na Hirošimu měla mohutnost 14 kt TNT a obsahovala 64 kg U, který obsahoval 80 % uranu \(^{235}\text{U}\).

\[\text{řešení}\]

1. \(a = 365,242\) d; \(T_f = 30\) a = \(9,467 \cdot 10^8\) s; \(N_1 = 1,03 \cdot 10^{23}\); \(A = ?\)

\[
N = \frac{3,8 \cdot 10^{12}}{1,602 \cdot 10^{-19} \cdot 200 \text{ MeV}} = 1,19 \cdot 10^{23} \frac{\text{štěpení}}{\text{kt TNT}}
\]

\(N (\text{Hirošima}) = 1,19 \cdot 10^{23} \cdot 14 = 1,663 \cdot 10^{24} \text{ štěpení}\)

\(N_1 = 1,663 \cdot 10^{24} \cdot 6,2 \cdot 10^{-2} = 1,03 \cdot 10^{23} \text{ atomů}^{\text{137}}\text{Cs}\)

\(A = \lambda \cdot N_1 = (\ln 2)/(T_f) \cdot N_1 = \frac{0,693 \cdot 1,03 \cdot 10^{23}}{9,467 \cdot 10^8} = 7,54 \cdot 10^{13} \text{ Bq}\)

\(Při\ jaderném\ výbuchu\ v\ Hirošimě\ byla\ uvolněna\ celková\ aktivita\ \text{137}^{\text{Cs}}\ o\ velikosti\ 7,54 \cdot 10^{13} \text{ Bq}.\)
4.5 Vypočtěte energii jednoho fotonu (keV) vzniklého při anihilaci pozitron-elektronového páru, jestliže hmotnost elektronu i pozitronu je $9,11 \cdot 10^{-31}$ kg. (512 keV)

4.6 Jakou vlnovou délku má foton o energii 660 keV, který je emitován z radiouňuklidu 137Cs? (1,88 pm)

4.7 Určete energii (v keV) fotonu s vlnovou délkou 0,07 nm. (17,7 keV)

4.8 Jakou rychlosti se pohybuje elektron urychlený z klidu napětím 4,89 V? (1,31 Mm s$^{-1}$)

4.9 Jaká je de Broglieho vlnová délka elektronu urychleného v obrazovce televizního přijímače potenciálním rozdílem 15 kV? (0,01 nm)

4.10 Jak velká změna hmotnosti odpovídá změně energie rovně 1 kWh? (40 pg)

4.11 Kolik iontových párů vytvoří částice alfa pohybující se rychlostí 15 Mm/s ve vzduchu, jestliže k vytvoření jednoho iontového páru je třeba energie 34 eV? (137 000)

4.12 O kolik poklesne hmotnost excitovaného jádra 60Co při vyzáření fotonu záření gama o energii 1,33 MeV? (2,37 \cdot 10^{-30} kg)

4.13 Při rozštěpení jednoho jádra 235U se uvolňuje přibližně 200 MeV. Jaké množství uranu 235U se spotřebuje za den v jaderné elektrárně o tepelném výkonu 440 MW a o účinnosti 30 %? (1,55 kg)

4.14 Při štěpení jádra 235U se uvolní přibližně 200 MeV. Vypočtěte, kolik kilogramů 235U se musí rozštěpit ve štěpné zbrani o mohutnosti 20 kt TNT, jestliže při výbuchu 1 t TNT se uvolní energie 4,1 GJ. (0,999 kg)
4.15 Při výbuchu neutronové zbraně o mohutnosti 1 kt TNT je přibližně uvolněno \(10^{24}\) neutronů. Vypočtěte, kolik neutronů prochází plochou 1 \(m^2\) ve vzdálenosti 1000 m za předpokladu, že nedochází k jejich absorpci ve vzduchu. \((7,96 \cdot 10^{16})\)

4.16 Jaká vlnová délka přísluší elektronům, které jsou urychlovány v elektrickém poli s napětím \(10^4\) V? (bez relativistických korekcí) \((1,23 \cdot 10^{-11} \text{ m})\)

4.17 Jaká je vlnová délka de Broglieho vln, příslušejících elektronu s kinetickou energií \(10^6\) eV? (bez relativistických korekcí) \((1,22 \cdot 10^{-12} \text{ m})\)

4.18 Kolik fotonů za jednu sekundu, resp. minutu, emituje žárovka s výkonem 60 W, jestliže předpokládáme, že vysílá monochromatické žluté světlo vlnové délky \(\lambda = 0,6 \cdot 10^{-6} \text{ m}\)? \((1,8 \cdot 10^{20} \text{ fotonů s}^{-1}, 1,09 \cdot 10^{22} \text{ fotonů za minutu})\)

4.19 Kolik atomů je obsaženo v 1 kg čistého \(^{235}\text{U}\)? \((N = 2,56 \cdot 10^{24})\),

4.20 Kolik energie se uvolní při dokonalém štěpení 1 kg \(^{235}\text{U}\)? \((E = 8,21 \cdot 10^{13} \text{ J})\)

4.21 Z jednoho kilogramu \(^{235}\text{U}\) se uvolní při dokonalém štěpení energie \(8,21 \cdot 10^{13}\) J. Jak dlouho by tato energie umožnila svítit 100 W žárovkou? \((t = 26 000 \text{ a})\)

4.22 Jaké množství energie by bylo uvolněno při anihilaci \(10^{-6}\) kg hmoty se stejným množstvím antihmoty? \((180 \text{ GJ})\)

4.23 Jaké množství energie se uvolní při anihilaci elektronu a pozitronu? Výsledek vyjádřete v MeV. \((1,02 \text{ MeV})\)

4.24 Spočtěte, kolik energie \(B\) (v MeV) je třeba k oddělení všech nukleonů z jádra izotopu \(^{120}\text{Sn}\), a určete vazebnou energii na jeden nukleon \(B/A\) pro
tento izotop. Hmotnost protonu je $m_p = 1,0078250 \cdot m_u$, hmotnost neutronu $m_n = 1,0086649 \cdot m_u$, hmotnost izotopu 120Sn $m_{(120Sn)} = 119,9021966 \cdot m_u$. (1020 MeV, 8,50 MeV)

4.25 Neutron ztratí při srážce s jedním jádrem vodíku průměrně 2/3 své energie pružnými i nepružnými srážkami. Kolik srážek musí proběhnout, aby byl neutron o energii 1 MeV zpomalen na energii 0,024 eV? (44)
16. Seznam tabulek

<table>
<thead>
<tr>
<th>Tabulka 1.1</th>
<th>Přehled studijních oborů s výukou radiologické fyziky</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabulka 3.1</td>
<td>Hlavní jednotky SI soustavy</td>
<td>16</td>
</tr>
<tr>
<td>Tabulka 3.2</td>
<td>Odvozené jednotky SI soustavy</td>
<td>18</td>
</tr>
<tr>
<td>Tabulka 3.3</td>
<td>Násobné a dílčí jednotky podle třetí mocniny deseti</td>
<td>20</td>
</tr>
<tr>
<td>Tabulka 3.4</td>
<td>Násobné a dílčí jednotky podle jiné mocniny deseti než tří</td>
<td>21</td>
</tr>
<tr>
<td>Tabulka 3.5</td>
<td>Vedlejší jednotky</td>
<td>22</td>
</tr>
<tr>
<td>Tabulka 6.1</td>
<td>Základní vlastnosti částic</td>
<td>55</td>
</tr>
<tr>
<td>Tabulka 6.2</td>
<td>Krátkodobé radionuklidy používané v lékařských aplikacích</td>
<td>74</td>
</tr>
<tr>
<td>Tabulka 7.1</td>
<td>Přehled interakce ionizujícího záření s látkou</td>
<td>84</td>
</tr>
<tr>
<td>Tabulka 7.2</td>
<td>Hodnoty hmotnostního součinitele zeslabení</td>
<td>95</td>
</tr>
<tr>
<td>Tabulka 7.3</td>
<td>Hodnoty $d_{1/2}$ a $d_{1/10}$ pro materiál beton, železo a olovo</td>
<td>98</td>
</tr>
<tr>
<td>Tabulka 7.4</td>
<td>Hodnoty vzrůstového faktoru pro olověný materiál</td>
<td>100</td>
</tr>
<tr>
<td>Tabulka 8.1</td>
<td>Radiační váhové faktory</td>
<td>133</td>
</tr>
<tr>
<td>Tabulka 8.2</td>
<td>Tkáňové váhové faktory</td>
<td>137</td>
</tr>
<tr>
<td>Tabulka 10.1</td>
<td>Hodnoty dávkových limitů</td>
<td>159</td>
</tr>
<tr>
<td>Tabulka 14.1</td>
<td>Některé důležité konstanty</td>
<td>264</td>
</tr>
</tbody>
</table>
17. Seznam obrázků

Obrázek 3.1 Definice prostorového úhlu. ... 27
Obrázek 5.1 Pokles počtu nerozpadlých jader v závislosti na čase. 46
Obrázek 5.2 Logaritmická závislost poklesu počtu nerozpadlých jader v čase. 47
Obrázek 5.3 Závislost počtu rozpadlých a nerozpadlých jader na poločase přeměny. 48
Obrázek 6.1 Rozpadové schéma 226Ra ... 58
Obrázek 6.2 Průchod částice α potenciální barierou ... 59
Obrázek 6.3 Rozpadové schéma 15P ... 60
Obrázek 6.4 Rozpadové schéma 19Ne ... 62
Obrázek 6.5 Rozpadové schéma 55Fe ... 64
Obrázek 6.6 Rozpadové schéma 137Cs ... 65
Obrázek 6.7 Energetické spektrum beta přeměny 137Cs 66
Obrázek 6.8 Rozpadové schéma 60Co ... 67
Obrázek 6.9 Rozpadové schéma 252Cf ... 69
Obrázek 6.10 Rozdělení hmotnostních čísel při spontánním štěpení 70
Obrázek 6.11 Schéma odběru techneciového generátoru ... 72
Obrázek 7.1 Comptonův rozptyl ... 88
Obrázek 7.2 Závislost typu interakce na energii a atomovém čísle absorbátoru. 92
Obrázek 7.3 Zeslabení fotonového svazku .. 92
Obrázek 7.4 Závislost součinitele zeslabení na energii fotonového záření 94
Obrázek 7.5 Závislost poklesu počtu fotonů na počtu polovrstev. 97
Obrázek 7.6 Úzký a široký svazek ... 99
Obrázek 8.1 K definici fluenci částic (hustoty prošlých částic.) 114
Obrázek 8.2 Definice absorbované dávky ... 115
Obrázek 8.3 Porovnání průběhu kermu a dávky na hloubce absorbujícího materiálu ... 117
Obrázek 8.4 Hmotnostní součinitel zeslabení a absorpce energie 126
Obrázek 8.5 Tkáňové váhové faktory .. 145
Obrázek 9.1 Vazby mezi veličinami ... 150
Obrázek 10.1 Vztahy mezi veličinami stanovitelnými měřením................................. 165
Obrázek 11.1 Symbol používaný pro označení potravin ošetřených ionizací 181
Obrázek 11.2 Pokles dávkových příkonů v závislosti na čase (log – log). 188
Obrázek 11.3 Pokles dávkových příkonů v závislosti na čase (log – lin) 189